Florian Oschmann

Forscher | Akademiker | Musiker
Büro: 311, Žitná 690/25 | Tel.: +420-222 090 742

Hier finden Sie einige meiner neuesten Publikationen. Eine vollständige Liste enthät mein CV.

Publikationen

  1. Höfer, R., Nečasová, Š., Oschmann, F.: Quantitative homogenization of the compressible Navier-Stokes equations towards Darcy’s law. Annales de l’Institut Henri Poincaré, Analyse Non Linéaire (2025) (link)
  2. Jin, B., Nečasová, Š., Oschmann, F., Roy, A.: Collision/No-collision results of a solid body with its container in a 3D compressible viscous fluid. Journal of Differential Equations (2025) (link)
  3. Nečasová, Š., Oschmann, F.: A collision result for both non-Newtonian and heat conducting Newtonian compressible fluids. Proceedings of the Royal Society of Edinburgh Section A: Mathematics (2024) (link)
  4. Oschmann, F., Pokorný, M.: Homogenization of the unsteady compressible Navier-Stokes equations for adiabatic exponent γ > 3. Journal of Differential Equations (2023) (link)
  5. Bella, P., Feireisl, E., Oschmann, F.: Γ-convergence for nearly incompressible fluids. Journal of Mathematical Physics (2023) (link)
  6. Bella, P., Feireisl, E., Oschmann, F.: Rigorous Derivation of the Oberbeck-Boussinesq Approximation Revealing Unexpected Term. Communications in Mathematical Physics (2023) (link)

Preprints

  1. Bella, P., Lemming, F., Marziani, R., Oschmann, F.: Brinkman's law as Γ-limit of compressible low Mach Navier-Stokes equations and application to randomly perforated domains. arXiv preprint (link)
  2. Gwiazda, P., Oschmann, F., Wróblewska-Kamińska, A.: Rigorous derivation of magneto-Oberbeck-Boussinesq approximation with non-local temperature term. arXiv preprint (link)
  3. Basarić, D., Oschmann, F., Pan, J.: Qualitative derivation of a density dependent incompressible Darcy law. arXiv preprint (link)
  4. Oschmann, F.: To collide, or not to collide, that is the question - a survey. arXiv preprint (link)
  5. Lu, Y., Oschmann, F.: Qualitative/quantitative homogenization of some non-Newtonian flows in perforated domains. arXiv preprint (link)