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1 Jacobi and Hessian matrix

I'll start with the question “what is the intuition and meaning behind Jacobi and Hessian ma-
trices?”

Starting from 1D: if f : R — R is differentiable, then f'(x) = %(m) is simply a one-dimensional
function; you can view it as one single point/place somewhere in the universe. Going to higher
dimensions f : R® — R™ for some n,m > 1, where now

f(@) = f(oy, s mn) = (fr, 0 fn) (@1, m0) = (fil@), o (),

then we have many places in the universe where different derivatives d,,f; = % lie. You can
compare this with mushrooms in the forest: everywhere is something, on the left you see some

yellow 0, f2, and two meters ahead there is a poisonous 0,,,f7. The Jacobi matrix

Vfl(-l") amfl(x) axnfl(m)
Jy(x) = L= : :

V fin(z) Ouy fn(@) - O, fr(2)
does nothing else than to collect and order these derivatives; it works like a basket with speci-
fied slots for each mushroom. The specific case m = 1 turns the Jacobi matrix into the usual
gradient (say, you just have one type of mushroom and order all of them by color in a row).
Applications are, as we know, the implicit function theorem, inverse function theorem (here
especially n = m and the determinant det J; is important), finding extrema, and, later, change
of variables in multi-dimensional integrals. If f is totally differentiable in some point xy, then
this total differential D f,,(h) is exactly D f,,(h) = J¢(xo)-h and especially a linear function of h.

The Hessian matrix Hy(x) does roughly the same, but for second derivatives. An important
change here is that Hy is defined just for functions mapping into the reals, that is, f : R® — R
reps. m = 1 in the above (for m > 2 the Hessian matrix is not defined). It is defined as

a:?rlxlf(x) 8§1$2f($) D a.zlxnf(x)
2 2 2

and sometimes 831,%, is abbreviated as 0,,,; as you will see in the sequel. Note especially that

H is always a square matrix, and if second derivatives are continuous, then H; = H}F, meaning
it is symmetric. Moreover, it helps in classifying extrema:



Again starting from 1D, if a function f : R — R has an extremum in zy, then f’(zp) = 0 (in
higher dimensions this translates into the Jacobi matrix resp. the gradient above). To figure
out whether it is a Max or a Min, we can ask what f”(zg) does: if f”(z) > 0, then z, is a local
Min; if f”(zg) < 0, then it is a local Max. In higher dimensions, the second derivative turns
into Hy, and the inequalities < and > translate into definiteness of Hy. Indeed, if Hy(xo) is
positive definite, then zq is a local Min of f, and if it’s negative definite, then we have a local
Max. Furthermore, if Hy is indefinite, then z, is a saddle point. Note that this needs strict
definiteness, meaning, if H; is just (positive or negative) semi-definite, then nothing can be
said. Definiteness plays also a role in convexity: if Hy is positive [negative] definite everywhere
in the domain of definition of f, then f is (strictly) convex [concave| there. There are several
criteria to figure out whether a matrix is positive or negative definite, probably the most known
is the determinant or Hurwitz (also named Silvester’s or principal minors) criterion, which I
will not speak about here; see linear algebra/discrete mathematics for this.

2 Taylor polynomial again

Let’s try to figure out the Taylor polynomial of degree 3 at the point (z,y) = (0,0) of the
function

f(z,y) = (z +2°)siny.
To do so, we first need all derivatives up to third order; thus

Opf = (1 4+ 2x)siny, Opzf = 2siny, Opaaf =0,
Oyf = (x + %) cosy, Ot = —1, yyf = —0,f.

Not to forget the mixed partial derivatives (I will already use that they are continuous so the
order of differentiation doesn’t matter):

Opyf = (1 +2z) cosy = Oy f,
aa;xyf =2 COsYy = 8xy:0.f = ayx:cfa
Opyyf = —(1 4 22) siny = Oygyy f = Oyya f-

Now the Taylor polynomial takes the general form (compare the powers of each term with the
order and number of derivatives coming with it, see also explanation below)

T} n0.00)(@:9) = F (20, %0) + Ou f (w0, y0) (& = 20) + 0, (w0, 90)(y — )
+ ;![axmf(l’()a Yo)(x — 1’0)2+O:ryf(51:07 Yo) (& = 0)(y = ¥o)

+0ye f (0, 50) (Y — 90) (& — 29) + Byy f (0, 90) (¥ — %0)°)

3 2

1
+*[5’mzf(55071/0)($ 960) +0say f (20, l/o)(”f—l'o) Y — o)

( (:
3!
+ 0y f (20, Yo) (2 — 20)* (Y — Yo) + Oyea f (X0, Yo) (x — 0)?
+ Oy f (20, 90) (2 — 20) (Y — ¥0)* + Oyay f (0, y0)
+ Oy f (20, Y0) (& — 0) (Y — ¥0)? + Dyyy S (%0, %0)

(Y — %)
( (Y — v0)?
(v — yo)s}-

T — To)

I highlighted the terms that will survive for us since for the given function f, all other derivatives
n (zg,yo) = (0,0) will be zero. Hence, the Taylor polynomial collapses to

T 00)(2,y) = 2y + 2%y = (z +2%)y.



Compare the form of the polynomial with the number and order of derivatives: O,z f(%0, o)
has 2x the derivative wrt. first variable x and 1x wrt. second one y, hence, the variables coming
with this derivative are 2x the first element of the vector (z — zo,y — yo) and 1x the second
element. Thus, Oy f (20, yo) comes with (z — o) (x — 20)(y — o) = (x — yo)*(y — yo). Similarly
for Oy, f, this comes with 1x the second element, 1x the first, and again 1x the second, thus
Oyay f (20, Y0) comes with (y —yo)(z — 20)(y — yo) = (z — 20)(y — yo)?. Higher order polynomials
work in the same way; essentially, it’s just counting and comparing.

3 Implicit function theorem (IFT) again

First a word to “why do we care”: say we stand on some mountain at a specific point and we
want to walk around the mountain, but without going down or up to reduce the energy we
need. Which way shall we take? Even worse, does there even exist such a way?

The mountain profile is a function F' that assigns to each point (z,y) in the plane a specific
height F'(z,y). The point where we are standing is (o, ¥o), and we assume that F'(xg,yo) =0
(if we are standing higher, we can simply shift our function by this specific height in order to
force it to be zero). If the way would be known (by other tourist and signs), then we can write
it as a function (a path) g : R — R with g(xg) = yo, and since this is the way not going up or
down, we have F(z, g(z)) = 0 for each z. But how do we know ¢? To figure this out is exactly
the outcome of IFT. It can be seen as the question to “does such a way exist and, if yes, how
it looks like” instead of “let’s follow the signs”.

The assumption det %—Z(xo, Yo) # 0 means nothing else than there are no crossings in the profile;

in other words, if such a path ¢ exists, then it must be unique, at least in some neighborhood of
the point we're standing in. If such a crossing would happen, then the function g gives for one
single x two or more values for y, thus it will be multivalued and not even a function (in this
sense we might take the wrong way and get lost in the mountains). Mathematically speaking,
we search for even more solutions to an equation we already know one solution to. Our known
solution is (xg, yo), and these more solutions are (z, g(z)).

Let’s now try to find paths. Making the task a bit harder, we have:

Exercise 1. Show that there is some § > 0 and a function g : (—9,9) — R with ¢g(0) = 7 such
that

2sin g(z) = 3ze9@,

How the tangent of g on this point looks like? What can you say about monotonicity of g in
this point?

Solution. (I recommend to put 2siny — 3xze? = 0 into 3D geogebra and have a look on how
the paths look like to see what we actually do here; a picture always helps.) We define

F(z,y) = 2siny — 3zeY.

(The negative would do as well.) If such a function g exists, it must fulfil F'(z,g(z)) = 0 for
any x € (—0,0). Let’s first check that F'(0,7) = 0, so the point on the mountain in which we’re
standing is a good one. Next,

0, F = —3¢eY, OyF = 2cosy — 3xe?

such that partial derivatives are continuous and 9,F'(0,7) = —2 # 0 is invertible. Hence, IFT
guarantees the existence of some 9 > 0 and a continuously differentiable function ¢ fulfilling



what we want (that is, at least a (maybe very short) path exists).

To the tangent: We know that F'(z, g(x)) = 0 for any = € (=4, d). Differentiating both sides of
this equality wrt. z, using that the derivative of zero stays zero, and chain rule gives (again, I
use 0; and 0, to indicate differentiation wrt. first and second variable, respectively)

0= CZEF(%Q(@) = O\ F(x,9(x)) + 02F (z, 9(x))g (x).

Let me do this in a bit more detailed and formal way: define the function ® : (—4§,6) — R?
by ®(x) = (®1(x), Po(x)) := (x,g9(x)). Then & is a path (what a surprise in view of how we
called g on the mountain) and it is differentiable since g is with derivative ®'(z) = (1, ¢'(z)).
Moreover, we have 0 = F/(®y(z), ®2(x)) = F(P(z)) such that chain rule gives

D Tuar o), ) o) — (R ) ()
= 81F(x,g(x)) + 82F(.Z‘,g(l’))g/(l’),
which is the formula above. From here, we easily derive

Note what this means: without even knowing the exact form of g, we can calculate its derivative

in the given point! (Theoretically, in super super lucky situations you can solve the differential
equation to get the exact form of g, but in practice, this never happens.) By this, we find

0 =0 F(x,9(x)) + 0oF(x,9(x))g () & ¢'(x) =

—3eY —3e9(@)

/ - — —
g(@) = 2cosy — 3xeY |(z,9(x)) 2cos g(x) — 3xed®)

and thus, by ¢(0) = 7, we have

—3e” 3
¢ =——¢e" <0,

/ e —
g(O)— 2cosm—3-0-¢€™ 2

and in turn g is (strictly) decreasing in « = 0, which answers the question about monotonicity.
Moreover, the tangent is given by

/ 3 .
tgwo=0(T) = g(w0) + ¢’ (x0) (7 — 30) =T — €T

Note that the fact that g is decreasing does not mean that the “mountain” described by F' goes
down! It rather tells that g comes from the left, passes the point (0,7) and goes to the right in
the form of a “U”, but all at the same height of the mountain. In differentiating again, we could
get expressions for ¢”(0), ¢”’(0), and so on such that we might write down the Taylor polynomial
of g to get better and better approximations; see the formula for ¢” from the example I gave
in class, or differentiate the expression for ¢’ given above once more wrt. = to get the explicit
outcome (chain rule 4+ quotient rule!).

3.1 Where do functions live?

(This section is just for interested readers and not part of any HW or exam.)

One question for IFT was “do we know how large such ¢ (or in general, the neighborhood U of
some point oy € R™ guaranteed by IFT) can be?” This question is in general (a bit informally)
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answered by the following:

Let F : UxV — R" where U C R™ and V C R”, and let (z9,y0) € U x V such that
det %—5(370, yo) #0. Let U C U,V C V,and g : U — V with g(x¢) = yo be the sets and function
whose existence is guaranteed by IFT. Then the largest neighborhood U,,.x C U where g lives
(i.e., where it is defined) are all points = that can be connected to xy with a (possibly curved)
line such that det %(m, g(x)) # 0 on those lines. More formally, since g is dependent on zy, let
me call it ¢,,. Then

A

Unax = {z € U : det E;];(x,gmo(x)) # 0}.

One can show that U,y is connected, i.e., it is not the union of two disjoint sets. Moreover, in

other words, the first point where g fails to exist is where %—5 is not invertible anymore. This is

somewhat not surprising since the fact that this matrix s invertible is the core assumption in

IFT. In practice, the sets Unax cannot be written down explicitly; in some very special cases,
however, they can.

Let us determine the maximal existence intervals for the function g from Exercise 1. To this
end, we need to figure out when 0,F = 0, i.e.,

2cosy — 3xe? = 0.

This yields

x=ux(y) = ge_y cos y,

that is, depending on y, we can find the corresponding point x. Since pairs (x(y),y) shall
also be part of the mountain’s path, we additionally need F(z(y),y) = 0 there; inserting the
expression found for x = z(y) into F' therefore yields

2
0= F(z(y),y) =2siny — 3(§e’y cosy)ey = 2(siny — cosy),
thus we need to solve siny = cosy, which holds for any y of the form

yzykngrknr, k e Z.

In turn, all points (x,y) where 0,F(x,y) = 0 are given by

2 T x V2 . T

_ _“ 7 —(Z+km) _ (_ 1\kV~2 —Z—km _ _ "
J}—Ik—SCOS(4+/€7T)6 4 =(-1) g€ y—yk—4—i—k7r, ke Z.
These points give rise to infinitely many intervals, which is a consequence of the periodicity of
cos. Now we have g(0) = 7 € (yk, yx+1) if and only if & = 0; thus, the interval [, = (x, Tx41)
where xq = 0 € I} is also given for £ = 0, and the implicit function g has maximal interval of
existence given by

N 2 2
Umax = (_ \/3_6_4_7T, \é_e_‘l) ~ (—00093, 0215)
Here we needed to switch x; and xp,; because one of them is negative, whereas the other is

positive, and we don’t want I to be empty. Note that this interval is somehow super short,
but the best we can get. The full range of g, meaning Vi.x = g[Unmax|, is then

™ T
Visae = (y0,91) = (3 7 +7) ~ (0.785,3.927).



We could now search similarly for another function g satisfying g(0) = 0 (i.e., we want to have
another starting point on the mountain; I suggest to repeat the steps done above, i.e., to prove
that ¢ exists and how the tangent looks like). Obviously the points (xy, yx) stay the same, and
the value for k& where §(0) = 0 € (yg, yxs1) is now given by k = —1. The maximal existence
interval and range for this function g are then

2 \/§ —Tar \/§ _m

U = (= 5 717, e ¥) ~ (-4.974,0.215),
~ T T

Vi = (3 = ) = (-2.356,0.785).

Note also that none of the above Uy is symmetric, i.e., there is no d > 0 such that we can
write Upax = (xo — §, 20 + 0). However, IFT does not make a statement about the maximal
size of the neighborhood, it just tells that there exists some neighborhood (i.e., some § > 0).

Indeed, we can always find some (possibly very small) § > 0 such that (2o — 0,20 +6) C Unax,
so the outcome of IFT is always fine.
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