

Mathematical analysis II

Voluntary Homework 11

To be voluntarily handed in whenever via OWL

Transformers

Exercise 1 (Isodiametric inequality in 2D).

Let $g : \mathbb{R} \rightarrow (0, \infty)$ be continuous and π -periodic, that is, $g(\theta + \pi) = g(\theta)$ for any $\theta \in \mathbb{R}$. We define

$$\Omega = \{(x, y) = (r \cos(\theta), r \sin(\theta)) \in \mathbb{R}^2 : \theta \in [0, 2\pi], 0 \leq r \leq g(\theta)\},$$

and define the diameter of Ω as

$$\text{diam}(\Omega) = \sup\{|x - y| : x, y \in \Omega\}.$$

a) Show that the area A of Ω is given by

$$A = \frac{1}{2} \int_0^{2\pi} [g(\theta)]^2 d\theta.$$

(*Hint:* write $A = \int_{\Omega} 1 d(x, y)$, use a coordinate transformation to polar coordinates $(x, y) = (r \cos \phi, r \sin \phi)$, and use Fubini's theorem.)

b) Show that

$$A \leq \pi \left(\frac{\text{diam}(\Omega)}{2} \right)^2.$$

Give a geometrical interpretation of this inequality *for fixed diameter* $\text{diam}(\Omega)$. To this end, compare an arbitrary function g with the special constant one $g_0 = \text{diam}(\Omega)/2$. (*Hint:* what geometric property is included in the periodicity condition on g ? Which relationship between $\text{diam}(\Omega)$ and $\sup_{\theta \in \mathbb{R}} g(\theta)$ you can conclude from that? A sketch might be helpful.)

Solution. a) We use spherical coordinates $\Phi(r, \theta) = (r \cos \theta, r \sin \theta)$ and calculate the Jacobi determinant as

$$\det D\Phi = \det \begin{pmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{pmatrix} = r \cos^2 \theta + r \sin^2 \theta = r.$$

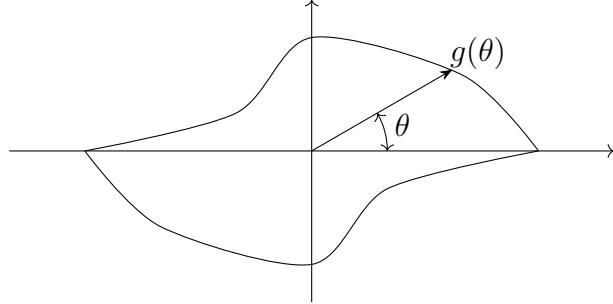
Thus, transformation theorem and Fubini yield

$$A = \int_{\Omega} 1 d(x, y) = \int_0^{2\pi} \int_0^{g(\theta)} r dr d\theta = \int_0^{2\pi} \left[\frac{r^2}{2} \right]_{r=0}^{r=g(\theta)} d\theta = \frac{1}{2} \int_0^{2\pi} [g(\theta)]^2 d\theta.$$

b) The periodicity of g result in the symmetry of Ω with respect to the origin; in fact, Ω is so-called *star-shaped* with respect to the origin. Since g is continuous and everywhere positive, this yields that $2 \sup_{\theta \in \mathbb{R}} g(\theta) = \text{diam}(\Omega)$. Plugging this into A gives

$$A = \frac{1}{2} \int_0^{2\pi} [g(\theta)]^2 d\theta \leq \frac{1}{2} \int_0^{2\pi} \left[\sup_{\theta \in \mathbb{R}} g(\theta) \right]^2 d\theta = \frac{1}{2} \left(\frac{\text{diam}(\Omega)}{2} \right)^2 \cdot 2\pi = \pi \left(\frac{\text{diam}(\Omega)}{2} \right)^2.$$

The interpretation of this inequality is as follows: for fixed diameter, the circle (resp. disc) maximizes the area of a set having this diameter. In other words, any set having a specified diameter cannot have more area than the corresponding disc with the same diameter.



Exercise 2 (Christmas).

We define

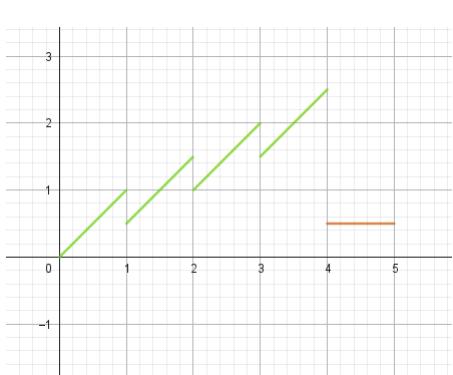
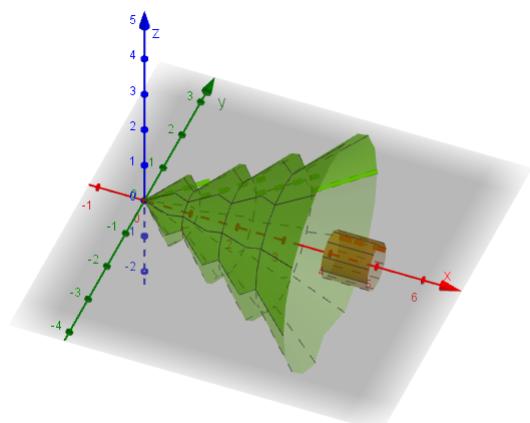
$$h(z) = z - \frac{1}{2} \lfloor z \rfloor - \lfloor z/4 \rfloor (z - 5/2), \quad z \in (0, 5).$$

Here, $\lfloor x \rfloor = \max\{k \in \mathbb{Z} : k \leq x\}$ is the largest integer less than a real number $x \in \mathbb{R}$. Let further

$$CT = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \leq h(z)^2\}.$$

a) Sketch h and the set CT (using colors if wished).
b) Calculate the volume of CT .

Solution. a) Pictures:



b) We will use cylindrical coordinates $\Phi(x, y, z) = (r \cos \theta, r \sin \theta, z)$. The Jacobi determinant of this mapping is given by

$$\det D\Phi = \det \begin{pmatrix} \cos \theta & -r \sin \theta & 0 \\ \sin \theta & r \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} = r.$$

Hence, transformation formula yields

$$vol(CT) = \int_{CT} 1 \, d(x, y) = \int_0^5 \int_0^{2\pi} \int_0^{h(z)} r \, dr \, d\theta \, dz = \pi \int_0^5 [h(z)]^2 \, dz.$$

We split the interval $(0, 5)$ into subintervals $(k, k + 1)$ with $k \in \{0, \dots, 4\}$ and calculate

- $z \in (0, 1)$: $h(z) = z$, $z \in (1, 2)$: $h(z) = z - 1/2$,
- $z \in (2, 3)$: $h(z) = z - 1$, $z \in (3, 4)$: $h(z) = z - 3/2$,
- $z \in (4, 5)$: $h(z) = 1/2$.

This yields

$$\begin{aligned} Vol(WB) &= \pi \left[\int_0^1 z^2 \, dz + \int_1^2 (z - 1/2)^2 \, dz + \int_2^3 (z - 1)^2 \, dz + \int_3^4 (z - 3/2)^2 \, dz + \int_4^5 (1/2)^2 \, dz \right] \\ &= \pi \left[\frac{1}{3} z^3 \Big|_0^1 + \frac{1}{3} (z - 1/2)^3 \Big|_1^2 + \frac{1}{3} (z - 1)^3 \Big|_2^3 + \frac{1}{3} (z - 3/2)^3 \Big|_3^4 + \frac{1}{4} \right] \\ &= \pi \left[\frac{1}{3} + \frac{1}{3} \left(\frac{27}{8} - \frac{1}{8} \right) + \frac{1}{3} (8 - 1) + \frac{1}{3} \left(\frac{125}{8} - \frac{27}{8} \right) + \frac{1}{4} \right] \\ &= \frac{97}{12} \pi. \end{aligned}$$

Merry Christmas and a Happy New Year 2026!