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Homework 9

To be handed in by Wednesday, 10.12.25, 23:59 h via OWL

Exercise 1 (Integration by parts). (2+3=5 points)

a) Show that for two continuously differentiable functions f, g : [a, b] → R, it holds∫ b

a
f(x)g′(x) dx = f(x)g(x)

∣∣∣∣b
a

−
∫ b

a
f ′(x)g(x) dx.

(Hint: consider the function F (x) = f(x)g(x).)

b) Let f : [a, b] → R be continuously differentiable and set for any k ∈ N

ak :=
∫ b

a
f(x) sin(kx) dx.

Show that limk→∞ ak = 0.

Solution. a) By product rule, we find

F ′(x) = f ′(x)g(x) + f(x)g′(x).

Linearity of the Riemann integral and the fundamental theorem of calculus thus yield∫ b

a
f ′(x)g(x) dx +

∫ b

a
f(x)g′(x) dx =

∫ b

a
f ′(x)g(x) + f(x)g′(x) dx = F (x)

∣∣∣∣b
a

= f(x)g(x)
∣∣∣∣b
a
,

which implies by re-arranging the desired.

b) This is a version of the so-called Riemann-Lebesgue lemma. Setting g′(x) = sin(kx) and
using part a), we find

ak = −f(x)cos(kx)
k

∣∣∣∣b
a

+
∫ b

a
f ′(x)cos(kx)

k
dx.

Since f is continuously differentiable and [a, b] is compact, there is a constant M > 0 such
that

sup
x∈[a,b]

(
|f(x) + |f ′(x)|

)
≤ M.

Using that also | cos(kx)| ≤ 1, we find

|ak| ≤ 2M

k
+ M(b − a)

k
.

Letting k → ∞ yields the desired. Note that we even proved a stronger version: in fact we
have a rate of convergence, namely, ak get not go slower to zero than 1/k.
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Exercise 2 (Riemann integral in nD). (3+2=5 points)
The words “interval” and “brick” are used synonymously here.

a) Show via definition that for any compact interval (brick) J ⊂ Rn and any constant c ∈ R,
the Riemann integral

∫
J c dx exists and that it holds

∫
J c dx = c · vol(J).

b) Let J = [a1, b1] × · · · × [an, bn] ⊂ Rn be a compact interval. A function ϕ : J → R is called
a step function if there are constants c1, . . . , ck ∈ R and pairwise disjoint intervals (bricks)
I1, . . . , Ik ⊂ J such that1

ϕ(x) =
k∑

i=1
ciχIi

(x), where χIi
(x) =

1 if x ∈ Ii,

0 else.

Show that for any step function, it holds
∫

J
ϕ(x) dx =

k∑
i=1

ci · vol(Ii).

(You can use without proof that for intervals I ∈ {(a, b), [a, b), (a, b], [a, b]} it holds vol(I) =
b − a, and that the function χIi

is integrable on the brick Ii. A sketch might be helpful, say,
for k = 2, J = [0, 1], I1 = [0, 1

2 ], I2 = (1
2 , 1], and c1 = 1, c2 = 2.)

Solution. a) Let P be any partition of the brick J , and let B(P ) be the set of bricks that can
be formed from P . Then, we have for the lower and upper sums that

s(c, P ) =
∑

B∈B(P )
inf
x∈B

(c) · vol(B) =
∑

B∈B(P )
c · vol(B) = c

∑
B∈B(P )

vol(B) = c · vol(J),

S(c, P ) =
∑

B∈B(P )
sup
x∈B

(c) · vol(B) =
∑

B∈B(P )
c · vol(B) = c

∑
B∈B(P )

vol(B) = c · vol(J),

where we used that vol(J) = ∑
B∈B(P ) vol(B). Hence, s(c, P ) = S(c, P ) for any partition,

such that this implies that∫
J
c dx = sup s(c, P ) = c · vol(J) =

∫
S(c, P ) =

∫
J
c dx.

That means that the Riemann integral
∫

J c dx exists and equals to c · vol(J).

b) For any i ∈ {1, . . . , k}, we have from part a) and the definition of χIi
that∫

J
ciχIi

(x) dx =
∫

Ii

ci dx = ci · vol(Ii).

Linearity of the Riemann integral thus forces
∫

J
ϕ(x) dx =

k∑
i=1

∫
J

ciχIi
dx =

k∑
i=1

ci · vol(Ii).

Small correction: Indeed B(P ) is not the set of all bricks formed from P , but rather the largest
class of (almost) disjoint bricks formed from P . In other words, bricks in B(P ) are formed just
from nearest-neighbour-points from P . For a complete formal definition, see the lecture notes.

1Although our definition of the integral uses it, the intervals Ii need not to be closed here.
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