

Mathematical analysis II

Homework 9

To be handed in by Wednesday, 10.12.25, 23:59 h via OWL

Exercise 1 (Integration by parts).

(2+3=5 points)

a) Show that for two continuously differentiable functions $f, g : [a, b] \rightarrow \mathbb{R}$, it holds

$$\int_a^b f(x)g'(x) dx = f(x)g(x) \Big|_a^b - \int_a^b f'(x)g(x) dx.$$

(Hint: consider the function $F(x) = f(x)g(x)$.)

b) Let $f : [a, b] \rightarrow \mathbb{R}$ be continuously differentiable and set for any $k \in \mathbb{N}$

$$a_k := \int_a^b f(x) \sin(kx) dx.$$

Show that $\lim_{k \rightarrow \infty} a_k = 0$.

Solution. a) By product rule, we find

$$F'(x) = f'(x)g(x) + f(x)g'(x).$$

Linearity of the Riemann integral and the fundamental theorem of calculus thus yield

$$\int_a^b f'(x)g(x) dx + \int_a^b f(x)g'(x) dx = \int_a^b f'(x)g(x) + f(x)g'(x) dx = F(x) \Big|_a^b = f(x)g(x) \Big|_a^b,$$

which implies by re-arranging the desired.

b) This is a version of the so-called Riemann-Lebesgue lemma. Setting $g'(x) = \sin(kx)$ and using part a), we find

$$a_k = -f(x) \frac{\cos(kx)}{k} \Big|_a^b + \int_a^b f'(x) \frac{\cos(kx)}{k} dx.$$

Since f is continuously differentiable and $[a, b]$ is compact, there is a constant $M > 0$ such that

$$\sup_{x \in [a, b]} (|f(x)| + |f'(x)|) \leq M.$$

Using that also $|\cos(kx)| \leq 1$, we find

$$|a_k| \leq \frac{2M}{k} + \frac{M(b-a)}{k}.$$

Letting $k \rightarrow \infty$ yields the desired. Note that we even proved a stronger version: in fact we have a rate of convergence, namely, a_k get not go slower to zero than $1/k$.

Exercise 2 (Riemann integral in nD).

(3+2=5 points)

The words “interval” and “brick” are used synonymously here.

- a) Show *via definition* that for any compact interval (brick) $J \subset \mathbb{R}^n$ and any constant $c \in \mathbb{R}$, the Riemann integral $\int_J c \, dx$ exists and that it holds $\int_J c \, dx = c \cdot \text{vol}(J)$.
- b) Let $J = [a_1, b_1] \times \cdots \times [a_n, b_n] \subset \mathbb{R}^n$ be a compact interval. A function $\phi : J \rightarrow \mathbb{R}$ is called a *step function* if there are constants $c_1, \dots, c_k \in \mathbb{R}$ and pairwise disjoint intervals (bricks) $I_1, \dots, I_k \subset J$ such that¹

$$\phi(x) = \sum_{i=1}^k c_i \chi_{I_i}(x), \quad \text{where} \quad \chi_{I_i}(x) = \begin{cases} 1 & \text{if } x \in I_i, \\ 0 & \text{else.} \end{cases}$$

Show that for any step function, it holds

$$\int_J \phi(x) \, dx = \sum_{i=1}^k c_i \cdot \text{vol}(I_i).$$

(You can use without proof that for intervals $I \in \{(a, b), [a, b), (a, b], [a, b]\}$ it holds $\text{vol}(I) = b - a$, and that the function χ_{I_i} is integrable on the brick I_i . A sketch might be helpful, say, for $k = 2$, $J = [0, 1]$, $I_1 = [0, \frac{1}{2}]$, $I_2 = (\frac{1}{2}, 1]$, and $c_1 = 1$, $c_2 = 2$.)

Solution. a) Let P be any partition of the brick J , and let $\mathcal{B}(P)$ be the set of bricks that can be formed from P . Then, we have for the lower and upper sums that

$$\begin{aligned} s(c, P) &= \sum_{B \in \mathcal{B}(P)} \inf_{x \in B} (c) \cdot \text{vol}(B) = \sum_{B \in \mathcal{B}(P)} c \cdot \text{vol}(B) = c \sum_{B \in \mathcal{B}(P)} \text{vol}(B) = c \cdot \text{vol}(J), \\ S(c, P) &= \sum_{B \in \mathcal{B}(P)} \sup_{x \in B} (c) \cdot \text{vol}(B) = \sum_{B \in \mathcal{B}(P)} c \cdot \text{vol}(B) = c \sum_{B \in \mathcal{B}(P)} \text{vol}(B) = c \cdot \text{vol}(J), \end{aligned}$$

where we used that $\text{vol}(J) = \sum_{B \in \mathcal{B}(P)} \text{vol}(B)$. Hence, $s(c, P) = S(c, P)$ for any partition, such that this implies that

$$\int_J c \, dx = \sup s(c, P) = c \cdot \text{vol}(J) = \int S(c, P) = \int_J c \, dx.$$

That means that the Riemann integral $\int_J c \, dx$ exists and equals to $c \cdot \text{vol}(J)$.

- b) For any $i \in \{1, \dots, k\}$, we have from part a) and the definition of χ_{I_i} that

$$\int_J c_i \chi_{I_i}(x) \, dx = \int_{I_i} c_i \, dx = c_i \cdot \text{vol}(I_i).$$

Linearity of the Riemann integral thus forces

$$\int_J \phi(x) \, dx = \sum_{i=1}^k \int_J c_i \chi_{I_i} \, dx = \sum_{i=1}^k c_i \cdot \text{vol}(I_i).$$

Small correction: Indeed $\mathcal{B}(P)$ is not the set of *all* bricks formed from P , but rather *the largest class of (almost) disjoint* bricks formed from P . In other words, bricks in $\mathcal{B}(P)$ are formed just from nearest-neighbour-points from P . For a complete formal definition, see the lecture notes.

¹Although our definition of the integral uses it, the intervals I_i need not to be closed here.