Mathematical analysis II Homework 8

To be handed in by Wednesday, 03.12.25, 23:59 h via OWL

Exercise 1 (Uniform continuity).

(1+3=4 points)

Let (X, d) and (Y, e) be metric spaces. A function $f: X \to Y$ is said to be Lipschitz continuous (resp. just Lipschitz) if there exists some $L \ge 0$ such that

$$e(f(x), f(y)) \le Ld(x, y) \quad \forall x, y \in X.$$

- a) Show that any Lipschitz continuous function is uniformly continuous.
- b) Show that $f:[0,\infty)\to[0,\infty)$, $f(x)=\sqrt{x}$ is uniformly continuous, but not Lipschitz. Here, we use d(x,y)=e(x,y)=|x-y|. (*Hint:* Split the nonnegative real line into [0,2] and $[1,\infty)$ and show uniform continuity on each of these intervals. Then argue why this implies uniform continuity everywhere on $[0,\infty)$.)

Exercise 2 (Riemann integral).

(2+2+2=6 points)

Let $f:[a,b]\to\mathbb{R}$ be integrable (that is, $\int_a^b f(x)\,\mathrm{d}x$ exists and is finite), and set

$$F(x) := \int_{a}^{x} f(t) \, \mathrm{d}t.$$

Show:

- a) The function f is bounded¹.
- b) $F:[a,b]\to\mathbb{R}$ is Lipschitz continuous, i.e., there is some $L\geq 0$ such that

$$|F(x) - F(y)| \le L|x - y| \quad \forall x, y \in [a, b].$$

c) If $f \ge 0$, then F is monotonically increasing.

¹This holds generally: any Riemann integrable function is bounded.