Mathematical analysis II Homework 7

To be handed in by Wednesday, 26.11.25, 23:59 h via OWL

Exercise 1 (Extrema with constraints).

(6 points)

Calculate the minimal distance of the point $x_0 = (1, -1, 1)$ to the set $M := \{(x, y, z) \in \mathbb{R}^3 : z^2 = 2xy + 1\}$. (Hint for easier calculations: how to say "náměstí vzdálenosti" in English? Explain why you are allowed to do that/why you don't lose anything.)

Solution. Set

$$d(x, y, z) = |(x, y, z) - (1, -1, 1)| = \sqrt{(x - 1)^2 + (y + 1)^2 + (z - 1)^2},$$

$$g(x, y, z) = z^2 - 2xy - 1.$$

Obviously $M = \{(x, y, z) \in \mathbb{R}^3 : g(x, y, z) = 0\}$. We then want to find the minimum of d under the constraint g. Since d is always nonnegative, we don't lose any information if we square it since squaring is a monotone action ("náměstí vzdálenosti" means "square of distance"); hence, we define $f(x, y, z) = [d(x, y, z)]^2$ and

$$\Lambda(x, y, z; \lambda) = f(x, y, z) + \lambda g(x, y, z) = (x - 1)^{2} + (y + 1)^{2} + (z - 1)^{2} + \lambda (z^{2} - 2xy - 1).$$

We then calculate

$$\begin{split} &\partial_x \Lambda = 2(x-1) - 2\lambda y, \\ &\partial_y \Lambda = 2(y+1) - 2\lambda x, \\ &\partial_z \Lambda = 2(z-1) + 2\lambda z, \\ &\partial_\lambda \Lambda = z^2 - 2xy - 1 = g(x,y,z). \end{split}$$

Finding an extremum needs $\nabla_{(x,y,z,\lambda)}\Lambda = 0$ (note that the gradient is a 4D vector and we will indeed need all four equations). We thus need to solve the system of equations (depending on λ)

$$x - 1 - \lambda y = 0,$$

 $y + 1 - \lambda x = 0,$
 $z(1 + \lambda) - 1 = 0,$
(1)

from which we immediately see $z=1/(1+\lambda)$ and $\lambda\neq -1$. Adding the first and second equation yields $x+y=\lambda(x+y)$ such that $(x+y)(1-\lambda)=0$. Thus, either $\lambda=1$, or x=-y. If $\lambda=1$, then x=1+y and $z=\frac{1}{2}$. Inserting this into the constraint g gives

$$0 = g(1+y, y, \frac{1}{2}) = \frac{1}{4} - 2y(1+y) - 1 = -\frac{3}{4} - 2y(1+y).$$

This equation turns into $0 = y^2 + y + \frac{3}{8} = (y + \frac{1}{2})^2 + \frac{1}{8}$, which does not have a real solution. Hence, $\lambda \neq 1$.

If x = -y, then the first two equations of (1) yield $x = 1/(1+\lambda)$ and $y = -1/(1+\lambda)$. Inserting into the constraint g yields

$$0 = g(\frac{1}{1+\lambda}, -\frac{1}{1+\lambda}, \frac{1}{1+\lambda}) = \frac{1}{(1+\lambda)^2} + \frac{2}{(1+\lambda)^2} - 1 = \frac{3}{(1+\lambda)^2} - 1$$

such that $\lambda = \pm \sqrt{3} - 1$. Our points of interest are then

$$P_{\pm} = \pm \frac{1}{\sqrt{3}} (1, -1, 1) \in M.$$

Calculating both squared distances yields

$$f(P_{+}) = (\frac{1}{\sqrt{3}} - 1)^{2} + (-\frac{1}{\sqrt{3}} + 1)^{2} + (\frac{1}{\sqrt{3}} - 1)^{2} = 3(\frac{1}{\sqrt{3}} - 1)^{2} = (\sqrt{3} - 1)^{2},$$

$$f(P_{-}) = (-\frac{1}{\sqrt{3}} - 1)^{2} + (\frac{1}{\sqrt{3}} + 1)^{2} + (-\frac{1}{\sqrt{3}} - 1)^{2} = 3(\frac{1}{\sqrt{3}} + 1)^{2} = (\sqrt{3} + 1)^{2}$$

such that P_+ is the minimum of f and thus of d on M. The minimal distance is then $d(P_+) = \sqrt{3} - 1$.

Exercise 2 (Directional derivative).

(2+2=4 points)

- a) Let $v \in \mathbb{R}^n$ and let $f : \mathbb{R}^n \to \mathbb{R}$ be totally differentiable in the point $x_0 \in \mathbb{R}^n$. Show that $D_v f(x_0) = \nabla f(x_0) \cdot v$.
- b) Calculate $D_v f(x_0)$ once using the definition and once with the help of the identity from part a):

$$f(x,y) = x^2 + y^2,$$
 $x_0 = (1,1),$ $v = (1,1).$

Solution. a) Since f is totally differentiable, we can write

$$f(x_0 + tv) - f(x_0) = \nabla f(x_0) \cdot tv + |tv|\mu(tv)$$

for $t \neq 0$ small enough, where μ is a continuous function with $\mu(0) = 0$. From the definition of total differential, this is nothing else than setting h = tv. Hence,

$$D_v f(x_0) = \lim_{t \to 0} \frac{f(x_0 + tv) - f(x_0)}{t} = \lim_{t \to 0} \frac{\nabla f(x_0) \cdot tv + |tv| \mu(tv)}{t} = \nabla f(x_0) \cdot v + |v| \lim_{t \to 0} \frac{|t|}{t} \mu(tv).$$

Since |t|/t| = 1 and μ is continuous with $\mu(0) = 0$, the last limit is zero and we are done.

b) Via definition: we have

$$f(x_0 + tv) - f(x_0) = (1+t)^2 + (1+t)^2 - 2 = 4t + 2t^2;$$

thus

$$D_v f(x_0) = \lim_{t \to 0} \frac{f(x_0 + tv) - f(x_0)}{t} = \lim_{t \to 0} \frac{4t + 2t^2}{t} = 4.$$

Via identity: we have

$$\nabla f(x,y) = (2x,2y) \Rightarrow \nabla f(x_0) = (2,2).$$

Thus

$$D_v f(x_0) = \nabla f(x_0) \cdot v = \begin{pmatrix} 2 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 2 + 2 = 4.$$