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To be handed in by Wednesday, 26.11.25, 23:59 h via OWL

Exercise 1 (Extrema with constraints). (6 points)
Calculate the minimal distance of the point x0 = (1, −1, 1) to the set M := {(x, y, z) ∈ R3 :
z2 = 2xy + 1}. (Hint for easier calculations: how to say “náměstí vzdálenosti” in English?
Explain why you are allowed to do that/why you don’t lose anything.)

Solution. Set

d(x, y, z) = |(x, y, z) − (1, −1, 1)| =
√

(x − 1)2 + (y + 1)2 + (z − 1)2,

g(x, y, z) = z2 − 2xy − 1.

Obviously M = {(x, y, z) ∈ R3 : g(x, y, z) = 0}. We then want to find the minimum of d under
the constraint g. Since d is always nonnegative, we don’t lose any information if we square it
since squaring is a monotone action (“náměstí vzdálenosti” means “square of distance”); hence,
we define f(x, y, z) = [d(x, y, z)]2 and

Λ(x, y, z; λ) = f(x, y, z) + λg(x, y, z) = (x − 1)2 + (y + 1)2 + (z − 1)2 + λ(z2 − 2xy − 1).

We then calculate

∂xΛ = 2(x − 1) − 2λy,

∂yΛ = 2(y + 1) − 2λx,

∂zΛ = 2(z − 1) + 2λz,

∂λΛ = z2 − 2xy − 1 = g(x, y, z).

Finding an extremum needs ∇(x,y,z,λ)Λ = 0 (note that the gradient is a 4D vector and we will
indeed need all four equations). We thus need to solve the system of equations (depending on
λ)

x − 1 − λy = 0,

y + 1 − λx = 0, (1)
z(1 + λ) − 1 = 0,

from which we immediately see z = 1/(1+λ) and λ ̸= −1. Adding the first and second equation
yields x + y = λ(x + y) such that (x + y)(1 − λ) = 0. Thus, either λ = 1, or x = −y. If λ = 1,
then x = 1 + y and z = 1

2 . Inserting this into the constraint g gives

0 = g(1 + y, y,
1
2) = 1

4 − 2y(1 + y) − 1 = −3
4 − 2y(1 + y).

This equation turns into 0 = y2 + y + 3
8 = (y + 1

2)2 + 1
8 , which does not have a real solution.

Hence, λ ̸= 1.
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If x = −y, then the first two equations of (1) yield x = 1/(1+λ) and y = −1/(1+λ). Inserting
into the constraint g yields

0 = g( 1
1 + λ

, − 1
1 + λ

,
1

1 + λ
) = 1

(1 + λ)2 + 2
(1 + λ)2 − 1 = 3

(1 + λ)2 − 1

such that λ = ±
√

3 − 1. Our points of interest are then

P± = ± 1√
3

(1, −1, 1) ∈ M.

Calculating both squared distances yields

f(P+) = ( 1√
3

− 1)2 + (− 1√
3

+ 1)2 + ( 1√
3

− 1)2 = 3( 1√
3

− 1)2 = (
√

3 − 1)2,

f(P−) = (− 1√
3

− 1)2 + ( 1√
3

+ 1)2 + (− 1√
3

− 1)2 = 3( 1√
3

+ 1)2 = (
√

3 + 1)2

such that P+ is the minimum of f and thus of d on M . The minimal distance is then d(P+) =√
3 − 1.

Exercise 2 (Directional derivative). (2+2=4 points)

a) Let v ∈ Rn and let f : Rn → R be totally differentiable in the point x0 ∈ Rn. Show that
Dvf(x0) = ∇f(x0) · v.

b) Calculate Dvf(x0) once using the definition and once with the help of the identity from part
a):

f(x, y) = x2 + y2, x0 = (1, 1), v = (1, 1).

Solution. a) Since f is totally differentiable, we can write
f(x0 + tv) − f(x0) = ∇f(x0) · tv + |tv|µ(tv)

for t ̸= 0 small enough, where µ is a continuous function with µ(0) = 0. From the definition
of total differential, this is nothing else than setting h = tv. Hence,

Dvf(x0) = lim
t→0

f(x0 + tv) − f(x0)
t

= lim
t→0

∇f(x0) · tv + |tv|µ(tv)
t

= ∇f(x0) · v + |v| lim
t→0

|t|
t

µ(tv).

Since ||t|/t| = 1 and µ is continuous with µ(0) = 0, the last limit is zero and we are done.

b) Via definition: we have
f(x0 + tv) − f(x0) = (1 + t)2 + (1 + t)2 − 2 = 4t + 2t2;

thus

Dvf(x0) = lim
t→0

f(x0 + tv) − f(x0)
t

= lim
t→0

4t + 2t2

t
= 4.

Via identity: we have
∇f(x, y) = (2x, 2y) ⇒ ∇f(x0) = (2, 2).

Thus

Dvf(x0) = ∇f(x0) · v =
(

2
2

)
·
(

1
1

)
= 2 + 2 = 4.
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