Mathematical analysis II Homework 6

To be handed in by Wednesday, 19.11.25, 23:59 h via OWL

Exercise 1 (Implicitness and more).

(3+1*+3+1=7+1* points)

Justify all your answers in this task well (i.e., verify assumptions of Theorems you use, conclusions from them, etc.)!

a) Show that close to x=0, there exist a $\delta>0$ and a continuously differentiable function $g:(-\delta,\delta)\to\mathbb{R}$ such that

$$g(x) = [g(x)]^3 + 2e^{g(x)}\sin(x).$$

*Bonus: How many such functions exist (for $\delta > 0$ but suitably small)?

b) For an interval $I \subseteq (-\delta, \delta)$, the graph of a function $f: I \to \mathbb{R}$ is defined as

$$gr(f) = \{(x, f(x)) : x \in I\}.$$

Show that for any compact interval $I \subset (-\delta, \delta)$ and any continuous function $f: I \to \mathbb{R}$, the graph $\operatorname{gr}(f)$ is compact in \mathbb{R}^2 . What can you say about the graphs $\operatorname{gr}(g)$ and $\operatorname{gr}(g')$ on such intervals I? (Hint: consider the function $\Phi: I \to \mathbb{R}^2$, $\Phi(x) = (x, f(x))$. Which properties Φ has?)

c) What can you say about the monotonicity of g in x = 0?

Solution. a) Define the function

$$F(x,y) = y^3 + 2e^y \sin(x) - y.$$

Obviously F is continuous. Then we seek for $\delta > 0$ and a function $g : (-\delta, \delta) \to \mathbb{R}$ such that F(x, g(x)) = 0 for any $|x| < \delta$. First, we see F(0, 0) = 0 such that our point of interest is $(x_0, y_0) = (0, 0)$. Next, we have

$$\partial_x F = 2e^y \cos(x),$$
 $\partial_y F = 3y^2 + 2e^y \sin(x) - 1,$

such that both partial derivatives are continuous (this yields the continuously differentiability of g), and moreover $\partial_y F(0,0) = -1 \neq 0$, so IFT is applicable and gives precisely the existence of $\delta > 0$ and g fulfilling the desired.

*Bonus: If x = 0, then

$$F(0,y) = y^3 - y = y(y^2 - 1).$$

In turn, the points $y_0 \in \mathbb{R}$ where $F(0, y_0) = 0$ are precisely $y_0 \in \{-1, 0, 1\}$. Moreover $\partial_y F(0, \pm 1) = 2 \neq 0$ such that IFT is applicable. Thus, there are exactly three such functions g, depending on which value for y_0 we chose at the beginning.

- b) Since f is continuous, the function Φ is as well. Thus, the image $\Phi[I]$ is compact since I is (images of compact sets under continuous functions are compact). By IFT, also g is continuous, and since F is continuously differentiable, the continuity transfers also to g'. Hence, both $\operatorname{gr}(g)$ and $\operatorname{gr}(g')$ are compact on compact intervals.
- c) Again by IFT, we have

$$g'(x) = -\frac{\partial_1 F(x, g(x))}{\partial_2 F(x, g(x))} = -\frac{2e^{g(x)}\cos(x)}{3[g(x)]^2 + 2e^{g(x)}\sin(x) - 1}.$$

Thus, by g(0) = 0, we have g'(0) = 2 > 0, and hence g is (strictly) increasing in x = 0. (If you chose $y_0 = \pm 1$, then $g'(0) = -e^{\pm 1}$ and hence these functions are strictly decreasing in x = 0.)

Exercise 2 (Taylor in higher dimensions).

(2+1=3 points)

Sometimes, Taylor polynomials in higher dimensions can be easier obtained than just using the formula

$$T_{f;x_0}^n(x) = f(x_0) + \nabla f(x_0) \cdot (x - x_0) + \frac{1}{2}(x - x_0) \cdot [H_f(x_0)(x - x_0)] + \dots$$

- a) Calculate the Taylor polynomials of $\log(1+x)$ and $\cos(x)$ around x=0 up to second order.
- b) Conclude that for the function

$$f(x, y, z) = (x + 1)\log(y + 1)\cos(z)$$

the Taylor polynomial of second order around $x_0 = (0, 0, 0)$ is given by

$$T_{f;x_0}^2(x) = y + xy - \frac{1}{2}y^2.$$

Solution. a) First, we have $\log(1) = 0$ and $\cos(0) = 1$. Next, $[\log(1+x)]' = \frac{1}{1+x}$, $[\log(1+x)]'' = -\frac{1}{(1+x)^2}$, and $[\cos(x)]' = \sin(x)$, $[\cos(x)]'' = -\cos(x)$, hence

$$T_{\log(1+x);0}^2(x) = x - \frac{x^2}{2},$$
 $T_{\cos(x);0}^2(x) = 1 - \frac{x^2}{2}.$

b) A product of Taylor polynomials is again a Taylor polynomial, if we talk about the same degree. Thus, we find close to (0,0,0)

$$(x+1)\log(1+y)\cos(z)\approx (x+1)(y-\frac{y^2}{2})(1-\frac{z^2}{2})=xy+y-\frac{xy^2}{2}-\frac{y^2}{2}-\frac{1}{2}z^2(x+1)(y-\frac{y^2}{2}).$$

(Note that replacing the first \approx with = is *not* correct (why?).) The last member of the product has degree at least 3 and hence it does not belong to $T_{f;x_0}^2$. The same holds for the third member; hence, we indeed find

$$T_{f;x_0}^2(x) = y + xy - \frac{1}{2}y^2.$$