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To be handed in by Wednesday, 19.11.25, 23:59 h via OWL

Exercise 1 (Implicitness and more). (3+1*+3+1=7+1* points)
Justify all your answers in this task well (i.e., verify assumptions of Theorems you use, conclu-
sions from them, etc.)!

a) Show that close to x = 0, there exist a δ > 0 and a continuously differentiable function
g : (−δ, δ) → R such that

g(x) = [g(x)]3 + 2eg(x) sin(x).

*Bonus: How many such functions exist (for δ > 0 but suitably small)?

b) For an interval I ⊆ (−δ, δ), the graph of a function f : I → R is defined as

gr(f) = {(x, f(x)) : x ∈ I}.

Show that for any compact interval I ⊂ (−δ, δ) and any continuous function f : I → R, the
graph gr(f) is compact in R2. What can you say about the graphs gr(g) and gr(g′) on such
intervals I? (Hint: consider the function Φ : I → R2, Φ(x) = (x, f(x)). Which properties Φ
has?)

c) What can you say about the monotonicity of g in x = 0?

Solution. a) Define the function

F (x, y) = y3 + 2ey sin(x) − y.

Obviously F is continuous. Then we seek for δ > 0 and a function g : (−δ, δ) → R such
that F (x, g(x)) = 0 for any |x| < δ. First, we see F (0, 0) = 0 such that our point of interest
is (x0, y0) = (0, 0). Next, we have

∂xF = 2ey cos(x), ∂yF = 3y2 + 2ey sin(x) − 1,

such that both partial derivatives are continuous (this yields the continuously differentia-
bility of g), and moreover ∂yF (0, 0) = −1 ̸= 0, so IFT is applicable and gives precisely the
existence of δ > 0 and g fulfilling the desired.

*Bonus: If x = 0, then

F (0, y) = y3 − y = y(y2 − 1).

In turn, the points y0 ∈ R where F (0, y0) = 0 are precisely y0 ∈ {−1, 0, 1}. Moreover
∂yF (0, ±1) = 2 ̸= 0 such that IFT is applicable. Thus, there are exactly three such functions
g, depending on which value for y0 we chose at the beginning.
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b) Since f is continuous, the function Φ is as well. Thus, the image Φ[I] is compact since
I is (images of compact sets under continuous functions are compact). By IFT, also g is
continuous, and since F is continuously differentiable, the continuity transfers also to g′.
Hence, both gr(g) and gr(g′) are compact on compact intervals.

c) Again by IFT, we have

g′(x) = −∂1F (x, g(x))
∂2F (x, g(x)) = − 2eg(x) cos(x)

3[g(x)]2 + 2eg(x) sin(x) − 1 .

Thus, by g(0) = 0, we have g′(0) = 2 > 0, and hence g is (strictly) increasing in x = 0. (If
you chose y0 = ±1, then g′(0) = −e±1 and hence these functions are strictly decreasing in
x = 0.)

Exercise 2 (Taylor in higher dimensions). (2+1=3 points)
Sometimes, Taylor polynomials in higher dimensions can be easier obtained than just using the
formula

T n
f ;x0(x) = f(x0) + ∇f(x0) · (x − x0) + 1

2(x − x0) · [Hf (x0)(x − x0)] + ...

a) Calculate the Taylor polynomials of log(1 + x) and cos(x) around x = 0 up to second order.

b) Conclude that for the function

f(x, y, z) = (x + 1) log(y + 1) cos(z),

the Taylor polynomial of second order around x0 = (0, 0, 0) is given by

T 2
f ;x0(x) = y + xy − 1

2y2.

Solution. a) First, we have log(1) = 0 and cos(0) = 1. Next, [log(1+x)]′ = 1
1+x

, [log(1+x)]′′ =
− 1

(1+x)2 , and [cos(x)]′ = sin(x), [cos(x)]′′ = − cos(x), hence

T 2
log(1+x);0(x) = x − x2

2 , T 2
cos(x);0(x) = 1 − x2

2 .

b) A product of Taylor polynomials is again a Taylor polynomial, if we talk about the same
degree. Thus, we find close to (0, 0, 0)

(x + 1) log(1 + y) cos(z) ≈ (x + 1)(y − y2

2 )(1 − z2

2 ) = xy + y − xy2

2 − y2

2 − 1
2z2(x + 1)(y − y2

2 ).

(Note that replacing the first ≈ with = is not correct (why?).) The last member of the
product has degree at least 3 and hence it does not belong to T 2

f ;x0 . The same holds for the
third member; hence, we indeed find

T 2
f ;x0(x) = y + xy − 1

2y2.
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