DR. FLORIAN OSCHMANN KARLOVA UNIVERZITA
Zimni semestr 2025/26

Mathematical analysis 11

Homework 6

To be handed in by Wednesday, 19.11.25, 23:59 h via OWL

Exercise 1 (Implicitness and more). (3+1*+3+1=T+1%* points)

Justify all your answers in this task well (i.e., verify assumptions of Theorems you use, conclu-
sions from them, etc.)!

a) Show that close to x = 0, there exist a § > 0 and a continuously differentiable function
g:(—9,0) = R such that

9(x) = [g(@)] + 2699 sin(z).
*Bonus: How many such functions exist (for 6 > 0 but suitably small)?
b) For an interval I C (—d,4), the graph of a function f : I — R is defined as
gr(f) ={(z, f(z)) :x € I}.

Show that for any compact interval I C (—0d,9) and any continuous function f : I — R, the
graph gr(f) is compact in R?. What can you say about the graphs gr(g) and gr(g’) on such
intervals 1?7 (Hint: consider the function ® : I — R? ®(z) = (x, f(x)). Which properties ®
has?)

¢) What can you say about the monotonicity of ¢g in x = 07

Solution. a) Define the function
F(z,y) = y® + 2¢¥sin(z) — y.

Obviously F' is continuous. Then we seek for § > 0 and a function g : (—=6,6) — R such
that F(z, g(x)) = 0 for any |z| < d. First, we see F'(0,0) = 0 such that our point of interest
is (zo,%0) = (0,0). Next, we have

O, F = 2¢Y cos(x), 0, F = 3y® + 2¢¥sin(x) — 1,

such that both partial derivatives are continuous (this yields the continuously differentia-
bility of g), and moreover 9,F(0,0) = —1 # 0, so IFT is applicable and gives precisely the
existence of 4 > 0 and g fulfilling the desired.

*Bonus: If x = 0, then
F(0,9) =y’ —y =y(y* — 1)
In turn, the points yo € R where F(0,y9) = 0 are precisely yo € {—1,0,1}. Moreover

0,F(0,£1) = 2 # 0 such that IFT is applicable. Thus, there are exactly three such functions
g, depending on which value for yy we chose at the beginning.
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b) Since f is continuous, the function ® is as well. Thus, the image ®[/] is compact since
I is (images of compact sets under continuous functions are compact). By IFT, also g is
continuous, and since F' is continuously differentiable, the continuity transfers also to ¢'.
Hence, both gr(g) and gr(g’) are compact on compact intervals.

c) Again by IFT, we have

Sy = _OF(@9(0) 29 cos(a)
0o F(z,9(x)) 3[g(z)]? + 2e9@) sin(x) — 1
Thus, by g(0) = 0, we have ¢'(0)
you chose yo = £1, then ¢'(0) = —e
x=0.)

=2 > 0, and hence g is (strictly) increasing in x = 0. (If
*1 and hence these functions are strictly decreasing in

Exercise 2 (Taylor in higher dimensions). (2+1=3 points)

Sometimes, Taylor polynomials in higher dimensions can be easier obtained than just using the
formula

Tf () = F(w0) + ¥ f(w0) - (& = w0) + 5z — 0) - [Hy(o)x — )] + ..

a) Calculate the Taylor polynomials of log(1+ z) and cos(z) around = = 0 up to second order.

b) Conclude that for the function

f(z,y,2) = (x4 1) log(y + 1) cos(z),

the Taylor polynomial of second order around zy = (0,0, 0) is given by

1
Tfu@) =y + 2y = 59"

Solution. a) First, we have log(1) = 0 and cos(0) = 1. Next, [log(1+z)]' = =, [log(1+z)]" =

T+a>
— (a2 and [cos(x)]" = sin(x), [cos(x)]” = — cos(x), hence
.1'2 x2
T’l%g(l'f‘x)ﬂ(:t) =T— 57 TcQos(x);O(a:) =1- 5

b) A product of Taylor polynomials is again a Taylor polynomial, if we talk about the same
degree. Thus, we find close to (0,0,0)

(& + D log(1+ ) cos(2) ~ (o + Dy = L)1 = ) =y +y = =L 22 1)y -

(Note that replacing the first ~ with = is not correct (why?).) The last member of the
product has degree at least 3 and hence it does not belong to Tf;xo. The same holds for the
third member; hence, we indeed find

1
T]%;xo('r) =Yty — §y2-



