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Explicitly implicit

Exercise 1. (3+2=5 points)
Let the function F : R × (0, ∞) → R, F (x, y) = yex − x ln(y) − 1 and the point P = (0, 1) be
given.

a) Show that there exists a neighborhood U of P and a function g : U → R such that we can
write y = g(x) in U . Show also that the function g is continuously differentiable.

b) Calculate g′(x) and g′(0).

Solution. (There was a small mistake in the domain of definition of F , which I corrected in
here.)

a) First, we calculate

∂yF = ex − x

y

such that we see that ∂yF (0, 1) = 1 ̸= 0. Moreover, ∂xF = yex − ln(y) such that both
partial derivatives are continuous. Therefore, by the implicit function theorem (IFT), there
is some neighborhood U of the point P and a function g : U → R with g(0) = 1 such that
F (x, g(x)) = 0 for any x ∈ U and, again by IFT, g is continuously differentiable in U .

b) By applying chain rule to F (x, g(x)) = 0, we obtain

∂1F (x, g(x)) + ∂2F (x, g(x)) · g′(x) = 0

(here I replaced ∂x and ∂y by ∂1 and ∂2, respectively, to emphasize that I take derivatives
wrt. first and second variable). Resolving leads to

g′(x) = −∂1F (x, g(x))
∂2F (x, g(x))

and the denominator is nonzero in U . This brings us to

g′(x) = −g(x)ex − ln(g(x))
ex − x

g(x)

and hence

g′(0) = −g(0)e0 − ln(g(0))
e0 − 0

g(0)
= −1.
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Exercise 2. (2+2+1=5 points)
Let F : R3 → R be given by

F (x, y, z) = x3 − y3 + z3 + 2z2 − 3xyz.

a) Show that there is a neighborhood of the point P = (x0, y0) = (1, −1) and a function
g = R2 → R with g(1, −1) = −1 such that F (x, y, g(x, y)) = 0 in this neighborhood.

b) Show that g has a stationary point in (1, −1). (Hint: partial derivatives wrt. x and y and
chain rule.)

c) Calculate the tangent plane of g in the point (1, −1). Give a geometric explanation why
your result is not surprising (“gradient is zero” does not count as geometric).

Solution. a) We calculate similarly to before F (1, −1, −1) = 1 + 1 − 1 + 2 − 3 = 0 and
∂xF = 3x2 − 3yz,

∂yF = −3y2 − 3xz,

∂zF = 3z2 + 4z − 3xy

such that all partial derivatives are continuous. Moreover ∂zF (1, −1, −1) = 2 ̸= 0 and
hence IFT tells us that there is some neighborhood U of P and a continuously differentiable
function g : U → R such that F (x, y, g(x, y)) = 0.

b) Again using chain rule gives
∂xF (x, y, g(x, y)) = ∂1F (x, y, g(x, y, )) + ∂3F (x, y, g(x, y)) · ∂xg(x, y) = 0,

∂yF (x, y, g(x, y)) = ∂2F (x, y, g(x, y, )) + ∂3F (x, y, g(x, y)) · ∂yg(x, y) = 0
such that the gradient ∇g = (∂xg, ∂yg) can be written as

∇g(x, y) = −[∂3F (x, y, g(x, y))]−1∇(1,2)F (x, y, g(x, y))
= −[3g(x, y)2 + 4g(x, y) − 3xy]−1(3x2 − 3yg(x, y), −3y2 − 3xg(x, y)),

where ∇(1,2) denotes the derivatives wrt. first and second variable of F . In another (maybe
clearer) form, this is

∂xg(x, y) = −∂1F (x, y, g(x, y))
∂3F (x, y, g(x, y)) , ∂yg(x, y) = −∂2F (x, y, g(x, y))

∂3F (x, y, g(x, y)) .

To have a stationary point, we need ∇g = 0; thus
∇g(1, −1) = −[3g(1, −1)2 + 4g(1, −1) + 3]−1(3 + 3g(1, −1), −3 − 3g(1, −1))

= −1
2(0, 0) = (0, 0),

hence g has indeed in (1, −1) a stationary point.

c) The tangent plane is given by

τg;P (x, y) = g(P ) + ∇g(P ) ·
(
(x, y) − P

)
.

Since ∇g(P ) = (0, 0), we are left with
τg;P (x, y) = g(P ) = −1.

In particular, the tangent plane is parallel to the x − y−plane. This is not surprising since
g has in P a stationary point; hence, the tangent plane must not have a slope there, which
means precisely to be parallel to the x − y−plane.

2


