DR. FLORIAN OSCHMANN KARLOVA UNIVERZITA

Zimni semestr 2025/26

Mathematical analysis 11

Homework 5

To be handed in by Wednesday, 12.11.25, 23:59 h via OWL

Ezxplicitly implicit

Exercise 1. (3+2=5 points)
Let the function F': R x (0,00) = R, F(x,y) = ye* — xzIn(y) — 1 and the point P = (0,1) be
given.

a)

b)

Show that there exists a neighborhood U of P and a function g : U — R such that we can
write y = g(z) in U. Show also that the function ¢ is continuously differentiable.

Calculate ¢'(x) and ¢'(0).

Solution. (There was a small mistake in the domain of definition of F', which I corrected in
here.)

a)

First, we calculate

T
Oy F =e" — —
! y

such that we see that d,F(0,1) = 1 # 0. Moreover, 0,F = ye® — In(y) such that both
partial derivatives are continuous. Therefore, by the implicit function theorem (IFT), there
is some neighborhood U of the point P and a function g : U — R with g(0) = 1 such that
F(z,g(x)) =0 for any x € U and, again by IFT, g is continuously differentiable in U.

By applying chain rule to F'(z, g(z)) = 0, we obtain
OF(x,9(x)) + 0 F (2, 9(x)) - g'(x) = 0

(here I replaced 0, and d, by 0; and 0,, respectively, to emphasize that I take derivatives
wrt. first and second variable). Resolving leads to

O F(z, 9())

9@ = =5 Fw. g(x))

and the denominator is nonzero in U. This brings us to

g(z)e” —In(g(z))
er — ﬁ

g'(x) =—

and hence




Exercise 2. (2+2+1=5 points)
Let F: R®* — R be given by
F(z,y,2) =2 —y* + 2% +22% — 3y,

a) Show that there is a neighborhood of the point P = (z9,%) = (1,—1) and a function
g =R? = R with g(1,—1) = —1 such that F(z,y, g(x,y)) = 0 in this neighborhood.

b) Show that ¢ has a stationary point in (1,—1). (Hint: partial derivatives wrt. z and y and
chain rule.)

c) Calculate the tangent plane of g in the point (1, —1). Give a geometric explanation why
your result is not surprising (“gradient is zero” does not count as geometric).

Solution. a) We calculate similarly to before F'(1,-1,—-1) =14+1—-142—-3 =0 and
0, F = 3% — 3yz,
0,F = —3y* — 3xz,
O0.F = 32° + 4z — 3y

such that all partial derivatives are continuous. Moreover 0,F(1,—1,—1) = 2 # 0 and
hence IF'T tells us that there is some neighborhood U of P and a continuously differentiable
function ¢ : U — R such that F(z,y, g(z,y)) = 0.

b) Again using chain rule gives
axF(x,y,g(Ly)) = @1F({L‘,y,g(l‘,y, )) + 63F(m7yag(l‘7y)) ’ aﬂcg(x7y) =0,
(%F(x,y,g(x,y)) = 82F(:L‘,y,g(x,y,)) + 83F(£If,y,g(l',y)) ' ('3yg(:c,y) =0
such that the gradient Vg = (0,9, 0,9) can be written as

Vg(x, y) - _[83F(x7 Y, g(ZL’, y))]_lv(l,Q)F(xu Y, g(l’, y))
= —[3g(x,y)* + 4g(x,y) — 3wy] ' (32* — yg(x,y), —3y* — 3xg(z,y)),

where V(1 9) denotes the derivatives wrt. first and second variable of F'. In another (maybe
clearer) form, this is

_62F(:E,y,g(:7€,y))
a3F(I7yag(x7y))'

_alF(xay7g(x7y))

OsF(x,y, 9(x,y))’
To have a stationary point, we need Vg = 0; thus
Vg(1,—1) = —[3g(1, —1)* +4g(1, =1) + 3] " (3 + 3¢(1, —1), =3 — 3¢(1,~1))

1
= _5(0’0) = (O’ 0)7

8xg('r7y> - ayQ(LZU) =

hence g has indeed in (1, —1) a stationary point.
c) The tangent plane is given by
Tep(@,y) = g(P) + Vg(P) - ((z,y) - P).
Since Vg(P) = (0,0), we are left with

Tp(2,y) = g(P) = —1.

In particular, the tangent plane is parallel to the x — y—plane. This is not surprising since
g has in P a stationary point; hence, the tangent plane must not have a slope there, which
means precisely to be parallel to the x — y—plane.



