Mathematical analysis II Homework 3

To be handed in by Wednesday, 29.10.25, 23:59 h via OWL

Exercise 1 (Chain rule and extrema).

 $(2+2+2=6 \ points)$

a) Let $f: \mathbb{R} \to \mathbb{R}$ be differentiable. Show that for $z = f(\frac{xy}{x^2+y^2})$ it holds

$$x\partial_x z + y\partial_y z = 0.$$

- b) Let $f: \mathbb{R} \to \mathbb{R}$ be differentiable and $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$ be constant. Calculate the gradient of the function $g: \mathbb{R}^n \to \mathbb{R}$, $g(x) = f(\langle a, x \rangle + b)$. Here, the notation $\langle a, x \rangle$ is the scalar product of these vectors. Remember that the gradient is defined as $\nabla g = (\partial_{x_1} g, ..., \partial_{x_n} g)$.
- c) Let

$$f(x,y) = (x - y - 1)^2.$$

Find and classify all extrema (minimum/maximum/saddle point).

Solution. a) We have

$$\partial_x z = f' \left(\frac{xy}{x^2 + y^2} \right) \frac{y(x^2 + y^2) - 2x^2 y}{(x^2 + y^2)^2},$$
$$\partial_y z = f' \left(\frac{xy}{x^2 + y^2} \right) \frac{x(x^2 + y^2) - 2y^2 x}{(x^2 + y^2)^2}.$$

In turn,

$$x\partial_x z + y\partial_y z = f'\left(\frac{xy}{x^2 + y^2}\right) \left[x \frac{y(x^2 + y^2) - 2x^2y}{(x^2 + y^2)^2} + y \frac{x(x^2 + y^2) - 2y^2x}{(x^2 + y^2)^2} \right]$$
$$= f'\left(\frac{xy}{x^2 + y^2}\right) \frac{x^3y + xy^3 - 2x^3y + x^3y + xy^3 - 2xy^3}{(x^2 + y^2)^2} = 0.$$

There is another nice proof that avoids fractions: define $u(x,y) = \frac{xy}{x^2+y^2}$. Then for any $k \neq 0$ we have u(kx,ky) = u(x,y). Now fix (x,y) and define for these (now fixed) points the function g(k) = u(kx,ky). But then g(k) = u(kx,ky) = u(x,y), so g is a constant function of k (since (x,y) is fixed). This means g'(k) = 0, where the derivative is wrt. k. Now lets apply chain rule:

$$0 = g'(k) = x\partial_x u(kx, ky) + y\partial_y u(kx, ky).$$

Taking the above equality in k=1 and noting also that, again by chain rule, we have $x\partial_x z + y\partial_y z = f'(u)(x\partial_x u + y\partial_y u)$, this shows the desired.

b) According to chain rule, we get

$$\nabla g(x) = f'(\langle a, x \rangle + b) \nabla (\langle a, x \rangle + b) = f'(\langle a, x \rangle + b) \nabla \langle a, x \rangle$$

since b is constant and hence $\nabla b = 0$. Further for any $i \in \{1, ..., n\}$

$$\partial_{x_i}\langle a, x \rangle = \partial_{x_i} \sum_{j=1}^n a_j x_j = a_i$$

such that simply $\nabla \langle a, x \rangle = a$ and thus

$$\nabla g(x) = f'(\langle a, x \rangle + b)a.$$

Note that since a is a vector, also the right hand-side is. Compare this with the one-dimensional rule [f(ax+b)]' = af'(ax+b). (Note: to be fully correct we would need to write $\nabla g(x) = f'(\langle a, x \rangle + b)a^T$ since ∇g is a row vector; but as I said in class, there is not really a common style how to write it.)

c) We calculate

$$\nabla f(x,y) = (2(x-y-1), -2(x-y-1))$$

and thus $\nabla f = 0$ iff y = x - 1. Since f is quadratic, in particular $f(x, y) \ge 0$ for any pair $(x, y) \in \mathbb{R}^2$, and f(x, x - 1) = 0, all points of the form (x, x - 1) are (global) minima. (And, since points (x, x - 1) are the only critical points who are all minima, no maxima or saddle points exist.)

Exercise 2 (Derivatives of higher order).

(2+2=4 points)

a) Calculate for the following function the derivatives up to second order:

$$f(x,y) = (x+y+3)^2 - e^{2x+y^2}.$$

b) For the vectorial function $v = (v_1, v_2, v_3) : \mathbb{R}^3 \to \mathbb{R}^3$ we define the divergence and curl via

$$\operatorname{div} v = \nabla \cdot v = \partial_1 v_1 + \partial_2 v_2 + \partial_3 v_3,$$

$$\operatorname{curl} v = \nabla \times v = \begin{pmatrix} \partial_2 v_3 - \partial_3 v_2 \\ \partial_3 v_1 - \partial_1 v_3 \\ \partial_1 v_2 - \partial_2 v_1 \end{pmatrix}.$$

(Here $\partial_i v_j$ means $\partial v_j/\partial x_i$ for any $i,j \in \{1,2,3\}$.) Show that div curl v=0.

Solution. a) We have

$$\partial_x f = 2(x+y+3) - 2e^{2x+y^2}, \qquad \partial_y f = 2(x+y+3) - 2ye^{2x+y^2},$$

$$\partial_{xy}^2 f = 2 - 4ye^{2x+y^2} = \partial_{yx}^2 f,$$

$$\partial_{xx}^2 f = 2 - 4e^{2x+y^2}, \qquad \partial_{yy}^2 f = 2 - 2e^{2x+y^2} - 4y^2e^{2x+y^2}.$$

Here, we also have $\partial_{xy}^2 f = \partial_{yx}^2 f$ by Schwarz' theorem (note that the second mixed partial derivatives are continuous).

b) Calculation and re-arranging leads to

div curl
$$v = \partial_1(\partial_2 v_3 - \partial_3 v_2) + \partial_2(\partial_3 v_1 - \partial_1 v_3) + \partial_3(\partial_1 v_2 - \partial_2 v_1)$$

= $\partial_{12}^2 v_3 - \partial_{21}^2 v_3 + \partial_{23}^2 v_1 - \partial_{32}^2 v_1 + \partial_{31}^2 v_2 - \partial_{13}^2 v^2 = 0.$

Especially here, we used Schwarz' theorem to see that $\partial_{ij}^2 v_k = \partial_{ji}^2 v_k$. In a similar way one can show that $\operatorname{curl} \nabla f = 0$ for any (differentiable) $f: \mathbb{R}^3 \to \mathbb{R}$. Such things are very often used in physics, mainly when talking about magnetic fields, and in some special cases, also the other direction holds: if $v: U \to \mathbb{R}^3$ is a function, where $U \subset \mathbb{R}^3$ is "not too bad", and if $\operatorname{div} v = 0$, then there exists some vector-valued function $w: U \to \mathbb{R}^3$ such that $v = \operatorname{curl} w$. For instance the magnetic field B is always source-free (there are no magnetic monopoles), which means exactly $\operatorname{div} B = 0$, and there exists some so-called vector potential A such that $B = \operatorname{curl} A$. From this the whole theory about magnetic fields follows, how stars are working, etc.