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Exercise 1 (Continuity and closedness). (2+2+2=6 points)

a) We define the following function f : R2 \ {(0, 0)} → R via

f(x, y) = x2y

x2 + y2 .

Decide whether this function is continuous, and whether or not we can extend it to a function
that is continuous on the whole of R2. (Hint: You can use without proof that for any x, y ̸= 0,
it holds |xy|/(x2 + y2) ≤ 1.)

b) Let (X, d) be a metric space and a ∈ X. Show that the function

f : X → [0, ∞), f(x) = d(x, a)

is continuous.

c) Let (X, d) be a metric space and f : X → R be continuous. Show that the kernel

kerf := f−1({0})

is closed in X. (Reminder: for a set A ⊂ R, the pre-image is defined as f−1(A) = {x ∈ X :
f(x) ∈ A}.)

Solution. a) Outside (0, 0) the function is continuous because it’s a composition of continuous
functions. In the interesting point (0, 0) we have, thanks to the inequality given in the hint,
that

lim
(x,y)→(0,0)

|f(x, y)| ≤ lim
(x,y)→(0,0)

|x| = 0.

Hence we may define

f̃(x, y) =

f(x, y) pro (x, y) ̸= (0, 0),
0 pro (x, y) = (0, 0),

thus, we can extend f to a function continuous on the whole of R2.

b) Since d is a metric, triangle inequality holds, in particular,

|d(x, a) − d(y, a)| ≤ d(x, y)

for any x, y ∈ X, which follows from the usual triangle inequality

d(x, a) ≤ d(x, y) + d(y, a)
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and symmetry in (x, y). Let now be x ∈ X and (xn)n∈N be a sequence that converges to x,
i.e., d(x, xn) → 0 when n → ∞. But this means that

|d(x, a) − d(xn, a)| ≤ d(x, xn) → 0

and hence d(xn, a) → d(x, a), which is nothing else than continuity of f . (In this example it
holds even more, namely that f is so-called Lipschitz continuous.) The ε− δ criterion might
here be used as well, try to write it down.

c) Let (xn)n∈N be a sequence in kerf that converges to x ∈ X, in particular, we have f(xn) = 0
for any n ∈ N. We need to show that also x ∈ kerf , i.e., f(x) = 0. Since f is continuous,
we find

0 = lim
n→∞

f(xn) continuity= f( lim
n→∞

xn) = f(x),

and can end the proof. Note: Since now we know this property, here we needed (and im-
plicitly assumed) that X is complete, otherwise (xn) might not have a limit in X.

An even easier proof uses topology: Since f is continuous and {0} ⊂ R is closed, the
pre-image f−1({0}) is closed as well. This proof works even without the assumption of
completeness.

Exercise 2 (Total vs. partial derivatives). (4 points)
Show that the function defined via

f(x, y) =

(x2 + y2) sin 1
x2+y2 if (x, y) ̸= (0, 0),

0 else

is totally differentiable, but its partial derivatives are not continuous.

Solution. With the help of the lecture’s theorem we know that if a function has partial deriva-
tives that are continuous, it is also totally differentiable. Outside (0, 0) we calculate

∂xf = 2x sin 1
x2 + y2 − 2x

x2 + y2 cos 1
x2 + y2 ,

∂yf = 2y sin 1
x2 + y2 − 2y

x2 + y2 cos 1
x2 + y2 ,

and these derivatives are obviously continuous outside of (0, 0), hence f is outside (0, 0) also
totally differentiable. In the point (0, 0) we need to use the definition of the total differential,
hence we need to find Df(0, 0) and µ(h) in such a way that

f(h1, h2) − f(0, 0) = Df(0, 0) · h + µ(h), lim
h→0

µ(h) = 0,

where h = (h1, h2) is a vector with sufficiently small magnitude. We take Df(0, 0) = (0, 0) and
µ(h) = f(h), then

f(h1, h2) − f(0, 0) = f(h1, h2), Df(0, 0) · h + µ(h) = µ(h),

and it holds

| lim
h→0

µ(h)| = lim
h→0

∣∣∣∣∣(h2
1 + h2

2) sin 1
h2

1 + h2
2

∣∣∣∣∣ ≤ lim
h→0

|h2
1 + h2

2| = 0,
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where we used that the absolute value is continuous, that | sin | ≤ 1, and the 2 cops theorem.
(It would be also sufficient to show that

lim
h→0

f(h1, h2) − f(0, 0) − Df(0, 0) · h

|h|
= 0,

in which case our estimate would just be
√

h2
1 + h2

2. Try to precise this.) In this way, we
have shown that Df really exists and even Df(0, 0) = (0, 0), hence f is totally differentiable
everywhere in R2. The partial derivatives are not continuous because for ∂xf it holds that

lim
x→0

lim
y→0

(
2x sin 1

x2 + y2 − 2x

x2 + y2 cos 1
x2 + y2

)
= lim

x→0

(
2x sin 1

x2 − 2
x

cos 1
x2

)
= − lim

x→0

2
x

cos 1
x2

and the last limit does not exist. In a similar fashion that also holds for ∂yf by symmetry rea-
sons (although there we have to switch limits to limy→0 limx→0, otherwise the outcome would
be zero).

Remark: In this example it really is enough to take limits one by one, meaning first y → 0 and
then x → 0, since we want to show that something is not continuous. Hence, it is for us enough
to choose one specific direction, which in this case is along the axes. If we would like to show
that something is continuous, this would not be enough, see the example from the first lecture.

Moreover, being continuous and having partial derivatives is NOT the same as continuous
partial derivatives, which means that the partial derivatives itself must be continuous. Indeed
the function above is such an example: it is continuous (prove it or use that totally differentiable
functions are continuous), and it has all partial derivatives, but those are not continuous.
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