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Úkol 1 (Integrace per partes). (2+3=5 bodů)

a) Dokažte, že pro každé dvě spojitě diferencovatelné funkce f, g : [a, b] → R platí∫ b

a
f(x)g′(x) dx = f(x)g(x)

∣∣∣∣b
a

−
∫ b

a
f ′(x)g(x) dx.

(Tip: uvažujte funkci F (x) = f(x)g(x).)

b) Nechť je f : [a, b] → R spojitě diferencovatelné a nechť pro každé k ∈ N

ak :=
∫ b

a
f(x) sin(kx) dx.

Dokažte, že limk→∞ ak = 0.

Řešení. a) Pomocí pravidla součinu máme

F ′(x) = f ′(x)g(x) + f(x)g′(x).

Lineárnost Riemannova integrálu a základní věta analýzy nám dávají∫ b

a
f ′(x)g(x) dx +

∫ b

a
f(x)g′(x) dx =

∫ b

a
f ′(x)g(x) + f(x)g′(x) dx = F (x)

∣∣∣∣b
a

= f(x)g(x)
∣∣∣∣b
a
,

což implikuje to, co chceme.

b) Toto je verze tzv. Riemann-Lebesgueovy lemmy. Definujme si g′(x) = sin(kx) a použijme
a), najdeme

ak = −f(x)cos(kx)
k

∣∣∣∣b
a

+
∫ b

a
f ′(x)cos(kx)

k
dx.

Jelikož f je spojitě diferencovatelné a [a, b] je kompaktní, existuje číslo M > 0 takové, aby

sup
x∈[a,b]

(
|f(x) + |f ′(x)|

)
≤ M.

Používáme též, že | cos(kx)| ≤ 1, najdeme

|ak| ≤ 2M

k
+ M(b − a)

k
.

V limitě k → ∞ jsme potvrzení dokázali. Všimněte si, že jsme dokázali ještě silnější verzi:
máme rychlost konvergence, zajména, ak nemůže jít k nule pomaleji než 1/k.
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Úkol 2 (Riemannův integrál v nD). (3+2=5 bodů)
Používáme zde slova “interval” a “cihla” synonymně.

a) Dokažte dle definice, že pro každý kompaktní interval (kompaktní cihlu) J ⊂ Rn a každé
číslo c ∈ R, Riemannův integrál

∫
J c dx existuje a že platí

∫
J c dx = c · vol(J).

b) Nechť je J = [a1, b1] × · · · × [an, bn] ⊂ Rn kompaktní interval. Funkci ϕ : J → R říkáme
schodovitá funkce, pokud jsou-li čísla c1, . . . , ck ∈ R a párově disjunktní intervaly (cihly)
I1, . . . , Ik ⊂ J takové, aby1

ϕ(x) =
k∑

i=1
ciχIi

(x), kde χIi
(x) =

1 if x ∈ Ii,

0 else.

Dokažte, že pro každou schodovitou funkci platí
∫

J
ϕ(x) dx =

k∑
i=1

ci · vol(Ii).

(Můžete bez důkazu používat, že pro intervaly I ∈ {(a, b), [a, b), (a, b], [a, b]} platí vol(I) =
b − a, a že funkce χIi

je integrabilní na cihle Ii. Obraz by mohl být nápomocný, třeba pro
k = 2, J = [0, 1], I1 = [0, 1

2 ], I2 = (1
2 , 1] i c1 = 1, c2 = 2.)

Řešení. a) Nechť je P rozdělení cihly J a B(P ) je množina všech cihel, které můžeme vytvořit
z P . Pak máme pro dolní a horní součet, že

s(c, P ) =
∑

B∈B(P )
inf
x∈B

(c) · vol(B) =
∑

B∈B(P )
c · vol(B) = c

∑
B∈B(P )

vol(B) = c · vol(J),

S(c, P ) =
∑

B∈B(P )
sup
x∈B

(c) · vol(B) =
∑

B∈B(P )
c · vol(B) = c

∑
B∈B(P )

vol(B) = c · vol(J),

kde jsme použili, že vol(J) = ∑
B∈B(P ) vol(B). Tedy máme s(c, P ) = S(c, P ) pro každé

rozdělení, což implikuje, že∫
J
c dx = sup s(c, P ) = c · vol(J) =

∫
S(c, P ) =

∫
J
c dx.

To znamená, že Riemannův integrál
∫

J c dx existuje a si rovne c · vol(J).

b) Pro každé i ∈ {1, . . . , k} máme pomocí a) a definice funkce χIi
, že∫

J
ciχIi

(x) dx =
∫

Ii

ci dx = ci · vol(Ii).

Linearnost Riemannova integrálu pak dá
∫

J
ϕ(x) dx =

k∑
i=1

∫
J

ciχIi
dx =

k∑
i=1

ci · vol(Ii).

Malá oprava: Vskutku B(P ) není množina všech cihel vytvořeny z P , ale spíš největší třída
(skoro) disjunktních cihel vytvořeny z P . Jinými slovy, cihly v B(P ) jsou vytvořeny jen z
bodů nejbližších sousedů z P (angl. nearest-neighbour-points). Pro celou formální definici, viz
poznámky z přednášky.

1I když naše definice integrálu toto používala, intervaly Ii tady nemusí být uzavřené.
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