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Collection of problems

Not for handing in

Exercise 1 (Metrics).

a) Let

d(x, y) =
∣∣∣∣∣ x

1 + |x|
− y

1 + |y|

∣∣∣∣∣ .
Show that (R, d) is a metric space. Are the metrics d and d1(x, y) := |x − y| equivalent?
Show or disprove.

b) Let (X, d) be a metric space. Find all k ∈ R such that

d1(x, y) := (k − 1)(k − 3)d(x, y)

is a metric on X.

c) Let (X, d) be a metric space and define like in HW 1

δ(x, y) = min{d(x, y), 1}.

Are, in general, the metrics d and δ equivalent? Show or disprove.

Exercise 2 (Open and closed sets).

a) Give an example of a set A ⊂ R (with the euclidean metric) that is neither closed nor open.
Can you also find such a set A ⊂ R2 or even A ⊂ Rn?

b) Give an example of metric spaces (X, d) and (Y, e), a function f : X → Y , and a closed
subset B ⊂ Y such that f−1[B] is not closed. Give also an example where you switch every
“closed” with “open”.

c) Find a function f : R → R, a closed set A ⊂ R and an open set B ⊂ R such that f [A] and
f [B] are neither open nor closed.

d) A space X is called connected, if the only sets that are both closed an open (clopen) are just
∅ and X.

1) Give an example X ⊂ R that is not connected. Determine all clopen subsets of X.
2) Let (X, d) and (Y, e) be metric spaces and

f : X → Y

be continuous and onto (surjective). Show that if X is connected, then Y is as well.
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Exercise 3 (Continuity).

a) Determine whether or not the following functions fi : R2 \{(0, 0)} → R are continuous. Can
we extend them in such a way that the functions are continuous on the whole of R2?

1) f1(x, y) = x+y√
x2+y2

2) f2(x, y) = x2y2

x2+y2

3) f3(x, y) = x2+y2

|x|+|y|

b) Let (X, d), (Y, e) be metric spaces, where X = A ∪ B is the union of open or closed subsets
of X. Let moreover fA : A → Y and fB : B → Y be continuous with fA = fB on A ∩ B.
Show that the function

f : X → Y, f(x) =

fA(x) if x ∈ A,

fB(x) if x ∈ B

is continuous.

Exercise 4 (Differentiability, extrema, tangential planes).

a) Let f : Rn → R be an affine mapping, that is, there is some linear mapping L : Rn → R
such that f(y) − f(x) = L(y − x). Show that f is totally differentiable on Rn. How the
total differential looks like?

b) Let f : Rn → R be continuously differentiable, x0 ∈ Rn and c = f(x0). Show that the
gradient ∇f(x0) is perpendicular to the level set

Nf (c) = {x ∈ Rn : f(x) = c},

i.e., the following holds: If ε > 0 and ϕ : (−ε, ε) → Rn is a differentiable curve with ϕ(0) = x0
and ϕ[(−ε, ε)] ⊂ Nf (c), then

⟨ϕ′(0), ∇f(x0)⟩ = 0.

(Hint: Consider the function g := f ◦ ϕ.)

c) Calculate the partial derivatives up to order 2 of f1 and f2 from Exercise 3.

d) Determine position and kind of all extrema to the function

f : R2 → R, f(x, y) = (x2 − 1)2 + y4.

Additionally, calculate the tangent plane at the point x0 = (2, 3). What happens to the
extrema if we consider g(x, y) = (x2 − 1)2 + y3 instead?

e) Let

f(t) = (1 + t, t2, 1 − t), g(x, y, z) = 1 + x + xyz.

Calculate once with and once without the help of the chain rule D(g ◦ f)(0).

f) Let n points (x1, y1), . . . , (xn, yn) be given. Find the equation of the line y = ax + b, for
which the sum

f(a, b) =
n∑

i=1
(yi − (axi + b))2

becomes minimal.
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Exercise 5 (Mean value theorem, second order derivatives, chain rule).

a) Show that the mean value theorem fails for functions f : Rn → Rm with m ≥ 2. More
precisely, given a = 0, h = 2π, and

f : R → R2, f(t) =
(

sin t
cos t

)
,

show that there does not exist a θ ∈ (0, 1) such that f(a + h) − f(a) = f ′(a + θh)h.

b) Show that for the function

f : R2 → R, f(x, y) =

xy x2−y2

x2+y2 if (x, y) ̸= (0, 0),
0 else,

we have ∂x∂yf(0, 0) ̸= ∂y∂xf(0, 0). Why this is not a contradiction to Schwarz’ theorem?

c) A function f : Rn → R is called homogeneous of degree k ∈ Z if for any s ∈ R\ {0}, we have
f(sx1, sx2, . . . , sxn) = skf(x1, x2, . . . , xn).

1) Give examples of functions f : R2 → R that are homogeneous of degree -1, 0, 1, 2,
respectively.

2) Show: If f : Rn → R is partially differentiable and homogeneous of degree k, then
n∑

i=1
xi∂xi

f(x1, . . . , xn) = kf(x1, . . . , xn).

Exercise 6 (Compactness, completeness).

a) Let (X, d) be a metric space. Show or disprove: if X is compact, then it is complete.

b) Let (X, d) be a metric space. Show or disprove: if X is complete, then it is compact.

c) Let f : R → R be a function, K ⊂ R and V ⊂ R. Find examples for the following situations:

1) K is compact, but f [K] is not.
2) K is compact, but f−1[K] is not.
3) V is complete, but f [V ] is not.
4) V is complete, but f−1[V ] is not.

d) Show or disprove: if (X, d) and (Y, e) are metric spaces, f : X → Y is continuous and X is
complete, then f [X] is complete.

e) Let (X, d) be a metric space and A ⊂ X. For x ∈ X we define the distance from x to A by
dist(x, A) = inf{d(x, y) : y ∈ A}.

1) Show that dist(·, A) : X → R is continuous.
2) Let A ⊂ X be compact and x ̸∈ A. Show that dist(x, A) > 0. Does this also hold if we

replace “compact” by “closed”?

f) (a bit harder task, don’t waste too much time with that one) Let A ⊂ Rn, I be any
(countable or uncountable) index set and Ui ⊂ Rn be open for any i ∈ I. We call (Ui)i∈I

an (open) covering of A if A ⊂ ⋃
i∈I Ui. Show that A is compact if and only if for any open

covering (Ui)i∈I there is a finite subcovering, i.e., there are finitely many Ui1 , . . . , Uin with
i1, . . . , in ∈ I such that A ⊂ ⋃n

j=1 Uij
. (In this sense, “compactness” is a generalization of

“finiteness”).
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g) Give for (0, 1) and [0, ∞) open coverings that do not posses a finite subcovering.

Exercise 7 (A mixed problem).
Let X = (0, 1) and

d(x, y) =

|x − y| + 1
x

+ 1
y

+ 1
1−x

+ 1
1−y

if x ̸= y,

0 if x = y.

a) Show that d is a metric on X.

b) Show that the space (X, |x − y|) is not complete, but (X, d) is complete.

c) Are the metrics |x − y| and d(x, y) equivalent?

d) Is (0, 1) bounded/closed/open/compact in the metric d?

Exercise 8 (Taylor polynomial, implicit function theorem, inverse function theorem).

a) Find the Taylor polynomials of degree two and three of the function

f(x, y) = x − y

x + y

in the point (1, 1).

b) Let f : R2 → R be given by f(x, p) = x2 + px − 1. Aim of this exercise is to train implicit
function theorem (IFT) with a known example.

1) Show directly (completing the square) that the equation is solvable for x, i.e., there is a
function g1 such that f(x, p) = 0 ⇔ x = g1(p).

2) Use IFT to show that there exists a function g2 such that f(x, p) = 0 ⇔ x = g2(p) for
all (x, p) in some neighborhood of (1, 0).

3) Differentiate the equation f(g2(p), p) = 0 wrt. p using chain rule to obtain an equation
for g′

2(p).
4) Check whether also g1 fulfils this equation.

c) Show that the system of equations

x2 + y2 = 2uv,

x3 + y3 = v3 − u3

defines in some neighborhood of the point (x0, y0) = (−1, 1) implicitly a function g(x, y) =
(u(x, y), v(x, y)) with g(−1, 1) = (1, 1). Determine the Jacobi matrix of g in (−1, 1).

d) (A student’s logarithmic rule) Show that there is a continuously differentiable function g
defined in a neighborhood of x = 1/e such that

log(g(x) − x) = log g(x)
log x

.

Determine first a “good” value y0 such that g(1/e) = y0. (For “generalizers”: Take 1/er

with r ≥ 1 instead of 1/e.)
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e) Find for the function

f : R2 → R2, f(x, y) = (ex sin y, ex cos y)

an open set U ⊂ R2 such that the restriction f |U is injective. Is f globally invertible?

f) Let f(x, y, z) = (x + y + z, xy + xz + yz, xyz). Show that f is continuously differentiable
and determine the Jacobi matrix. Decide also whether or not the inverse function theorem
is applicable in the points (1, 1, 0) and (1, −1, 0).

g) Let

f(x) =

x + 2x2 sin( 1
x
) if x ̸= 0,

0 if x = 0.

Show that f is differentiable and that the derivative is bounded on the interval (−1, 1).
Show moreover that in no neighborhood of x = 0, the function is injective. Why this isn’t
a contradiction with the inverse function theorem?

Exercise 9 (Directional derivatives, extrema under constraints).

a) Calculate the directional derivative of f(x, y, z) = exyz in the point x0 = (1, 1, 1) with
direction v = (1, 2, −1). Show that indeed Dvf(x0) = ∇f(x0) · v.

b) Let

f(x, y) =


xy2

x2+y4 if x ̸= 0,

0 if x = 0.

Show that f is discontinuous in (x, y) = (0, 0) (in particular, it is not totally differentiable
there), but all directional derivatives exist there.

c) Let f : R2 → R be totally differentiable in a point x0 ∈ R2, and let this total differential be
nonzero. Let v, w ∈ R2 such that Dvf(x0) = Dwf(x0) = 0. Show that v and w are linearly
dependent. Does this also hold when replacing R2 with R3 (or even Rn)?

d) Define

M = {(x, y) ∈ R2 : x = y and x ̸= 0},

and let

f(x, y) =

ex − 1 if (x, y) ∈ M,

0 else.

1) Show that f is partially differentiable in (x, y) ∈ R2 if and only if (x, y) ̸∈ M .
2) The directional derivative Dvf(0) exists for any v ∈ R2.
3) There is some v ∈ R2 with |v| = 1 such that Dvf(0) ̸= ∇f(0) · v.

e) Let f(x, y) = 4x2 − 3xy. Find all extrema of f in the disc D = {(x, y) ∈ R2 : x2 + y2 ≤ 1}.
Argue why such extrema do exist. (How to: first find the extrema inside D in the usual
way, then find extrema on the boundary using constraints.)

Exercise 10 (Uniform continuity, Riemann integral 1D).
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a) Let f : R → R be uniformly continuous. Show that there is some M ≥ 0 such that for any
x ∈ R, we have |f(x)| ≤ M(1 + |x|).

b) Construct an example of a function f : [0, 1) → R such that f is continuous but not
uniformly continuous.

c) Prove: Let (a, b) be a bounded open interval. A continuous function f : (a, b) → R is
uniformly continuous if and only if we can extend it to a function that is continuous on the
closed interval [a, b].

d) Show that for any Riemann integrable function f : [a, b] → R, it holds that∣∣∣∣ ∫ b

a
f(x) dx

∣∣∣∣ ≤
∫ b

a
|f(x)| dx.

e) Let x0 ∈ (0, 1) and define

χx0(x) =

1 if x = x0,

0 else.

Show via definition that
∫ 1

0 χx0(x) dx = 0.
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